A Fast Newton's Method for a Nonsymmetric Algebraic Riccati Equation

نویسندگان

  • Dario Bini
  • Bruno Iannazzo
  • Federico Poloni
چکیده

A special instance of the algebraic Riccati equation XCX−XE−AX+B = 0 where the n × n matrix coefficients A,B,C,E are rank structured matrices is considered. Relying on the structural properties of Cauchy-like matrices, an algorithm is designed for performing the customary Newton iteration in O(n2) arithmetic operations (ops). The same technique is used to reduce the cost of the algorithm proposed by L.-Z. Lu in [Numer. Linear Algebra Appl., 12 (2005), pp. 191– 200] from O(n3) to O(n2) ops while still preserving quadratic convergence in the generic case. As a byproduct we show that the latter algorithm is closely related to the customary Newton method by simple formal relations. In critical cases where the Jacobian at the required solution is singular and quadratic convergence turns to linear, we provide an adaptation of the shift technique in order to get rid of the singularity. The original equation is transformed into an equivalent Riccati equation where the singularity is removed while the matrix coefficients maintain the same structure as in the original equation. This leads to a quadratically convergent algorithm with complexity O(n2) which provides approximations with full precision. Numerical experiments and comparisons which confirm the effectiveness of the new approach are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact decomposition of the algebraic Riccati equation of deterministic multimodeling optimal control problems

In this paper we show how to exactly decompose the algebraic Riccati equations of deterministic multimodeling in terms of one pure-slow and two pure-fast algebraic Riccati equations. The algebraic Riccati equations obtained are of reduced-order and nonsymmetric. However, their ( ) perturbations (where = and , are small positive singular perturbation parameters) are symmetric. The Newton method ...

متن کامل

Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices

We consider the nonsymmetric algebraic Riccati equation for which the four coefficient matrices form an M -matrix. Nonsymmetric algebraic Riccati equations of this type appear in applied probability and transport theory. The minimal nonnegative solution of these equations can be found by Newton’s method and basic fixed-point iterations. The study of these equations is also closely related to th...

متن کامل

Nonsymmetric algebraic Riccati equations associated with an M-matrix: recent advances and algorithms

We survey theoretical properties and algorithms concerning the problem of solving a nonsymmetric algebraic Riccati equation, and we report on some known methods and new algorithmic advances. In particular, some results on the number of positive solutions are proved and a careful convergence analysis of Newton’s iteration is carried out in the cases of interest where some singularity conditions ...

متن کامل

On the Iterative Solution of a Class of Nonsymmetric Algebraic Riccati Equations

We consider the iterative solution of a class of nonsymmetric algebraic Riccati equations, which includes a class of algebraic Riccati equations arising in transport theory. For any equation in this class, Newton’s method and a class of basic fixed-point iterations can be used to find its minimal positive solution whenever it has a positive solution. The properties of these iterative methods ar...

متن کامل

Newton's Method with Exact Line Search for Solving the Algebraic Riccati Equation

This paper studies Newton's method for solving the algebraic Riccati equation combined with an exact line search. Based on these considerations we present a Newton{like method for solving algebraic Riccati equations. This method can improve the sometimes erratic convergence behavior of Newton's method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008